Extraction of Neutron Structure Functions in the Resonance Region and Tests of Quark-Hadron Duality

Simona Malace University of South Carolina
in collaboration with
Y. Kahn, W. Melnitchouk, S.A. Kulagin, C. Keppel

Outline

$>$ New method : extract $F_{2}{ }^{n}$ from nuclear F_{2}

- Application of method to smooth curves
Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)
- Application of method to data (resonance region) + QuarkHadron Duality in $\mathrm{F}_{2}{ }^{n}$ structure function
S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104102001 (2010)
- Application of method to data: (a lot of) technical details S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

Extraction of $F_{2}{ }^{n}$ from Nuclear F_{2}

New method: employs iterative procedure of solving integral convolution equations
Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)
> Impulse Approximation - virtual photon scatters incoherently from individual nucleons
(Beyond IA: FSI not addressed in present analysis)

$$
\begin{gathered}
F_{2}^{A}\left(x, Q^{2}\right)=\sum_{N=p, n} \int_{x}^{M_{A} / M} d y f_{0}^{N / A}(y, \gamma) F_{2}^{N}\left(\frac{x}{y}, Q^{2}\right) \\
\text { nuclear } F_{2}
\end{gathered} \begin{gathered}
\quad \begin{array}{l}
\text { light-cone } \\
\text { momentum nucleon } F_{2} \\
\text { distribution of } \\
\text { nucleons in nucleus } \\
\text { (smearing function) }
\end{array}
\end{gathered}
$$

Smearing Function for $F_{2}{ }^{d}$

$>$ Smearing function evaluated in the weak binding approximation, including finite-Q2 corrections
S.A. Kulagin and R. Petti, Nucl. Phys. A 765, 126 (2006)
Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

Extraction Method

$>$ We need $F_{2}{ }^{n}$ from:

$$
\begin{aligned}
& F_{2}^{d}=\tilde{F}_{2}^{p}+\widetilde{F}_{2}^{n}+\delta^{(o f f)} F_{2}^{d}, \tilde{F}_{2}^{n, p}=\int_{x}^{M_{d} / M} d y f(y, \gamma) F_{2}^{n, p}\left(\frac{x}{y}\right) \\
& \widetilde{F}_{2}^{n} \stackrel{F_{2}^{d}-F_{2}^{d(Q E)}-\delta^{(o f f)} F_{2}^{d}-\widetilde{F}_{2}^{p}}{ } \begin{array}{l}
\text { Y. Kahn, W. Melnitchouk, , S.A. Kulagin, } \\
\text { Phys. Rev. C 79, 0352005 (2009) }
\end{array}
\end{aligned}
$$

Additive extraction method: solve equation iteratively
$f(y, \gamma)=N(y-1)+\delta(y, \gamma)$ finite width of smearing function normalization of smearing function

$$
\tilde{F}_{2}^{n}(x)=\mathrm{N} F_{2}^{n}(x)+\int_{x}^{M_{d} / M} d y \delta f(y, \gamma) F_{2}^{n}\left(\frac{x}{y}\right)
$$

$$
F_{2}^{n(1)}(x)=F_{2}^{n(0)}(x)+\frac{1}{\mathrm{~N}}\left[\tilde{F}_{2}^{n}(x)-\int_{x}^{M_{d} / M} d y f(y, \gamma) F_{2}^{n(0)}\left(\frac{x}{y}\right)\right]
$$

Application of Method to Smooth Curves

\rightarrow Monotonic curves: $F_{2}{ }^{p}$ and $F_{2}{ }^{n}$ input from MRST; $F_{2}{ }^{d}$ is simulated using the finite- Q^{2} smearing function

- Additive method applied with initial guess $F_{2}{ }^{n(0)}=0$

$>$ Fast convergence: extracted $\mathrm{F}_{2}{ }^{n(1)}$ almost indistinguishable from $\mathrm{F}_{2}{ }^{n}$ input after only 1 iteration (smearing function sharply peaked around $y=1$)

Application of Method to Smooth Curves

> Curves with resonant structures: $F_{2}{ }^{n}$ input from MAID

- Additive method applied with initial guess $F_{2}{ }^{n(0)}=0$

$>$ After 1 or 2 iterations: resonant peaks clearly visible; after 5 iterations extracted result very close to "true" result

Application of Method to Smooth Curves

> Essential to take into account Q^{2} effects in the smearing function - Additive method $\left(F_{2}{ }^{n(0)}=0\right)$: and Q^{2}-dependent smearing function

- Additive method $\left(F_{2}{ }^{n(0)}=0\right)$: Q^{2}-independent smearing function

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)
$>$ After 10 iterations: extraction with Q^{2}-dependent smearing function converges to the input; extraction with Q^{2}-independent smearing function does not

Application of Method to Data

> Use proton and deuteron data at fixed Q^{2} (matched kinematics)

$$
\widetilde{F}_{2}^{n}(x)=F_{2}^{d}(x)-F_{2}^{d(Q E)}-\delta^{(o f f-\text { shell })} F_{2}^{d}(x)-\tilde{F}_{2}^{p}(x)^{-7 \text { data }}
$$

- Data: SLAC at $Q^{2}=0.6,0.9$, 1.7, 2.4 GeV ${ }^{2}$ + data from Jlab (Hall C E00-116) at $Q^{2}=4.5,5$, $5.5,6.2,6.4 \mathrm{GeV}^{2}$
- Data taken at fixed angle and running momentum of scattered electron $\Rightarrow>$ running \times and Q^{2}
- Bin-centering at cross section level using 2 different models => data at fixed Q^{2}

Application of Method to Data

$$
\widetilde{F}_{2}^{n}(x)=F_{2}^{d}(x)-F_{2}^{d(Q E)}-\delta^{\text {model }} \begin{array}{|c}
(\text { off }- \text { shell }) \\
d
\end{array} F_{2}^{d}(x)-\widetilde{F}_{2}^{p}(x)^{-7 \text { data }}
$$

- QE contribution extracted from data using model (form factors + same smearing function as for extraction)
- Off-shell corrections: upper limit from model ~1.5\%; we subtract $\frac{1}{2}$ of model prediction and assign 100% uncertainty to correction $=>$ contributes $<2 \%$ to total uncertainty on $\mathrm{F}_{2}{ }^{n}$

Application of Method to Data

> $F_{2}{ }^{n}$ extraction: initial guess $F_{2}{ }^{n(0)}=F_{2}{ }^{\text {p }}$; number of iterations $=2$

- $F_{2}{ }^{n}$ in resonance region: 3 resonant enhancements (fall with Q^{2} at ~ rate as for $F_{2}{ }^{p}$)
- $F_{2}{ }^{d}$ reconstructed from $F_{2}{ }^{p}$ (data) and $F_{2}{ }^{n}$ (extraction) $\sim F_{2}{ }^{d}$ (data) after 2 iterations

Application of Method to Data

> $\mathrm{F}_{2}{ }^{\mathrm{d}}$ reconstructed from $\mathrm{F}_{2}{ }^{\mathrm{p}}$ (data) and $\mathrm{F}_{2}{ }^{n}$ (extraction) ~
$F_{2}{ }^{\text {d }}$ (data) after 2 iterations

- For all Q^{2} studied: $F_{2}{ }^{d}$ reconstructed in agreement with data within experimental uncertainties
- Agreement between $F_{2}{ }^{d}$ reconstructed and data slightly worsens at the very large $x(x>0.9)$
S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

Application of Method to Data

$>$ Study dependence of result on number of iterations: compare extractions with 2 and 3 iterations

- Small change in $F_{2}{ }^{n}$ between iteration 2 and 3
- Extracted $F_{2}{ }^{n}$ changes to bring $F_{2}{ }^{d}$ reconstructed closer to $F_{2}{ }^{d}$ data; small differences between it. 2 and 3

Application of Method to Data

$>$ Study dependence of result on initial guess $F_{2}{ }^{n(0)}$: compare $F_{2}{ }^{n}$ extracted with 2 different inputs for initial guess: $F_{2}^{n(0)}=F_{2}^{p}$ vs $F_{2}{ }^{n(0)}=F_{2}^{p} / 2$

- After 2 iterations: only 6\% of all data lay outside a 2σ range
- Exercise caution with number of iterations: irregularities in data (especially deuterium) result in increased scattered in $\mathrm{F}_{2}{ }^{n}$ with increasing number of iterations
S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

$\left[F_{2}^{n}\left(F_{2}^{n(0)}=F_{2}^{p}\right)-F_{2}^{n}\left(F_{2}^{n(0)}=F_{2}^{p} / 2\right)\right] / \sigma_{F_{2}^{n}}$

Quark-Hadron Duality in the Neutron F_{2} Structure Function

$>$ Comparison: data to ALEKHIN (PDF fits with $\mathrm{W}^{2}>3.24 \mathrm{GeV}^{2}$) $\int_{x_{m}}^{x_{n}} F_{2}^{n, \text { data }}\left(x, Q^{2}\right) d x / \int_{x_{m}}^{x_{n}} F_{2}^{n, \text { param }}(x, Q$

- $2^{\text {nd }}$ and $3^{\text {rd }}$ RES regions: agreement within 15-20\%, on average
- $1^{\text {st }}$ RES region: agreement worsens at the highest Q^{2} (corresponds to the largest x)
- globally remarkable agreement: within 10\%
S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppepel, Phys. Rev. Lett. 104102001 (2010)

Quark-Hadron Duality

> Established in F_{2}^{p} from $Q^{2} \sim 1$ to $Q^{2} \sim 7 \mathrm{GeV}^{2}$
> Now acknowledged in $\mathrm{F}_{2}{ }^{n}$

S.P. Malace et al., Phys. Rev. C 80 035207 (2009)

S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys.

Rev. Lett. 104, 102001 (2010)
> Confirmation of duality in both proton and neutron => phenomenon not accidental but a general property of nucleon structure functions => use it to access the large-x region

n / p

> Ratio of neutron to proton truncated moments: compare data to ALEKHIN and MSTW

$$
\int_{x_{m}}^{x_{x}} F_{2}^{n}\left(x, Q^{2}\right) d x \int_{x_{m}}^{x_{n}} F_{2}^{p}\left(x, Q^{2}\right) d x
$$

S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104102001 (2010)

Summary

$>$ We extracted $F_{2}{ }^{n}$ from proton and deuteron F_{2} in resonance region

Quark-Hadron Duality in the Neutron $F_{2}{ }^{n}$ Structure Function:
(comparisons of truncated moments from data to those from QCD)

- globally (W^{2} < $4 \mathrm{GeV}^{2}$) remarkable agreement: within 10%
- locally: $2^{\text {nd }}\left(W^{2}: 1.9-2.5 \mathrm{GeV}^{2}\right)$ and $3^{\text {rd }}\left(W^{2}: 2.5-3.1 \mathrm{GeV}^{2}\right)$ RES regions, agreement within $15-20 \%$, on average; $1^{\text {st }}\left(W^{2}: 1.3-1.9 \mathrm{GeV}^{2}\right)$ RES region, agreement worsens at the highest Q^{2} (corresponds to the largest x)
\rightarrow Confirmation of duality in the neutron (already confirmed for proton) => phenomenon is a general property of structure functions
\rightarrow Can be used to access the large-x region
$>$ Detailed discussion of extraction method (application to data) in upcoming paper

