# **Extraction of Neutron Structure Functions in the Resonance Region and Tests of Quark-Hadron Duality**

#### Simona Malace University of South Carolina

in collaboration with Y. Kahn, W. Melnitchouk, S.A. Kulagin, C. Keppel

MENU2010, May 31 – June 4, 2010 Williamsburg, VA

## Outline

- > New method : extract  $F_2^n$  from nuclear  $F_2$ 
  - Application of method to smooth curves

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

#### Application of method to data (resonance region) + Quark-Hadron Duality in F<sub>2</sub><sup>n</sup> structure function

S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104 102001 (2010)

#### $\circ$ Application of method to data: (a lot of) technical details

S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

# Extraction of F<sub>2</sub><sup>n</sup> from Nuclear F<sub>2</sub>

# <u>New method</u>: employs iterative procedure of solving integral convolution equations

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

Impulse Approximation – virtual photon scatters incoherently from individual nucleons

(Beyond IA: FSI not addressed in present analysis)



# **Smearing Function for F**<sub>2</sub><sup>d</sup>

#### Smearing function evaluated in the weak binding approximation, including finite-Q2 corrections

S.A. Kulagin and R. Petti, Nucl. Phys. A 765, 126 (2006)

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)



#### **Extraction Method**

 $\blacktriangleright$  We need  $F_2^n$  from:  $F_{2}^{d} = \tilde{F}_{2}^{p} + \tilde{F}_{2}^{n} + \delta^{(off)}F_{2}^{d}, \quad \tilde{F}_{2}^{n,p} = \int^{M_{d}/M} dy f(y,\gamma) F_{2}^{n,p}(\frac{x}{-1})$  $\widetilde{F}_2^n = F_2^d - F_2^{d(QE)} - \delta^{(off)} F_2^d - \widetilde{F}_2^p$ Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009) Additive extraction method: solve equation iteratively  $f(y, \gamma) = N \delta(y-1) + \delta f(y, \gamma)$  finite width of smearing function normalization of smearing function  $\widetilde{F}_{2}^{n}(x) = \mathrm{N}F_{2}^{n}(x) + \iint_{x}^{M_{d}/M} dy \, \delta f(y, \gamma) F_{2}^{n}(\frac{x}{y}) \xrightarrow{\qquad} \text{perturbation}$  $F_2^{n(1)}(x) = \left| F_2^{n(0)}(x) + \frac{1}{N} \right| \left| \tilde{F}_2^n(x) - \int_x^{M_d/M} dy f(y, \gamma) \left| F_2^{n(0)}(\frac{x}{y}) \right| \right|$ initial guess

## **Application of Method to Smooth Curves**

> Monotonic curves:  $F_2^{p}$  and  $F_2^{n}$  input from MRST;  $F_2^{d}$  is simulated using the finite- $Q^2$  smearing function

• Additive method applied with initial guess  $F_2^{n(0)} = 0$ 



> Fast convergence: extracted  $F_2^{n(1)}$  almost indistinguishable from  $F_2^n$  input after only 1 iteration (smearing function sharply peaked around y = 1)

## **Application of Method to Smooth Curves**

- > Curves with resonant structures:  $F_2^n$  input from MAID
  - Additive method applied with initial guess  $F_2^{n(0)} = 0$



After 1 or 2 iterations: resonant peaks clearly visible; after 5 iterations extracted result very close to "true" result

## **Application of Method to Smooth Curves**

Essential to take into account Q<sup>2</sup> effects in the smearing function

- Additive method ( $F_2^{n(0)} = 0$ ): and  $Q^2$ -dependent smearing function
- Additive method ( $F_2^{n(0)} = 0$ ): Q<sup>2</sup>-independent smearing function



Y. Kahn, W. Melnitchouk,S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

After 10 iterations: extraction with Q<sup>2</sup>-dependent smearing function converges to the input; extraction with Q<sup>2</sup>-independent smearing function does not

 $\succ$  Use proton and deuteron data at fixed Q<sup>2</sup> (matched kinematics)





 $> F_2^n$  extraction: initial guess  $F_2^{n(0)} = F_2^p$ ; number of iterations = 2



 F<sub>2</sub><sup>d</sup> reconstructed from F<sub>2</sub><sup>p</sup>(data) and F<sub>2</sub><sup>n</sup>(extraction) ~ F<sub>2</sub><sup>d</sup>(data) after 2 iterations
S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104 102001 (2010)

>  $F_2^d$  reconstructed from  $F_2^p$ (data) and  $F_2^n$ (extraction) ~  $F_2^d$ (data) after 2 iterations



 For all Q<sup>2</sup> studied: F<sub>2</sub><sup>d</sup>
reconstructed in agreement with data within experimental uncertainties

• Agreement between  $F_2^d$ reconstructed and data slightly worsens at the very large x (x > 0.9)

S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

Study dependence of result on number of iterations: compare extractions with 2 and 3 iterations



> Study dependence of result on initial guess  $F_2^{n(0)}$ : compare  $F_2^n$  extracted with 2 different inputs for initial guess:  $F_2^{n(0)} = F_2^p vs$  $F_2^{n(0)} = F_2^p / 2$ 

- $\bullet$  After 2 iterations: only 6% of all data lay outside a  $2\sigma$  range
- Exercise caution with number of iterations: irregularities in data (especially deuterium) result in increased scattered in  $F_2^n$ with increasing number of iterations

S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation



# Quark-Hadron Duality in the Neutron F<sub>2</sub> Structure Function

> Comparison: data to ALEKHIN (PDF fits with W<sup>2</sup> > 3.24 GeV<sup>2</sup>)



Phys. Rev. Lett. 104 102001 (2010)

## **Quark-Hadron Duality**



Confirmation of duality in both proton and neutron => phenomenon not accidental but a general property of nucleon structure functions => use it to access the large-x region n/p

> Ratio of neutron to proton truncated moments: compare data to ALEKHIN and MSTW



S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104 102001 (2010)

# Summary

> We extracted  $F_2^n$  from proton and deuteron  $F_2$  in resonance region

Quark-Hadron Duality in the Neutron F<sup>n</sup><sub>2</sub> Structure Function: (comparisons of truncated moments from data to those from QCD)

- globally ( $W^2 < 4 \text{ GeV}^2$ ) remarkable agreement: within 10%
- locally:  $2^{nd}$  ( $W^2$ : 1.9-2.5 GeV<sup>2</sup>) and  $3^{rd}$  ( $W^2$ : 2.5-3.1 GeV<sup>2</sup>) RES regions, agreement within 15-20%, on average;  $1^{st}$  ( $W^2$ : 1.3-1.9 GeV<sup>2</sup>) RES region, agreement worsens at the highest  $Q^2$  (corresponds to the largest x)
- Confirmation of duality in the neutron (already confirmed for proton) => phenomenon is a general property of structure functions

Can be used to access the large-x region

 $\succ$  Detailed discussion of extraction method (application to data) in upcoming paper